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Abstract 17 

This paper reviews four commonly-used microwave radiative transfer models that take different 18 

electromagnetic approaches to simulate snow brightness temperature (TB): the Dense Media 19 

Radiative Transfer – Multi-Layer model (DMRT-ML), the Dense Media Radiative Transfer – 20 

Quasi-Crystalline Approximation Mie scattering of Sticky spheres (DMRT-QMS), the Helsinki 21 

University of Technology n-Layers model (HUT-nlayers) and the Microwave Emission Model of 22 

Layered Snowpacks (MEMLS). Using the same extensively measured physical snowpack 23 

properties, we compared the simulated TB at 11, 19 and 37 GHz from these four models. The 24 

analysis focuses on the impact of using different types of measured snow microstructure metrics 25 

in the simulations. In addition to density, snow microstructure is defined for each snow layer by 26 
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grain optical diameter (Do) and stickiness for DMRT-ML and DMRT-QMS, mean grain 27 

geometrical maximum extent (Dmax) for HUT n-layers and the exponential correlation length for 28 

MEMLS. These metrics were derived from either in-situ measurements of snow specific surface 29 

area (SSA) or macrophotos of grain sizes (Dmax), assuming non-sticky spheres for the DMRT 30 

models. Simulated TB sensitivity analysis using the same inputs shows relatively consistent TB 31 

behavior as a function of Do and density variations for the vertical polarization (maximum 32 

deviation of 18 K and 27 K, respectively), while some divergences appear in simulated variations 33 

for the polarization ratio (PR). Comparisons with ground-based radiometric measurements show 34 

that the simulations based on snow SSA measurements have to be scaled with a model-specific 35 

factor of Do in order to minimize the root mean square error (RMSE) between measured and 36 

simulated TB. Results using in-situ grain size measurements (SSA or Dmax, depending on the 37 

model) give a mean TB RMSE (19 and 37 GHz) of the order of 16-26 K, which is similar for all 38 

models when the snow microstructure metrics are scaled. However, the MEMLS model 39 

converges to better results when driven by the correlation length estimated from in-situ SSA 40 

measurements rather than Dmax measurements. On a practical level, this paper shows that the SSA 41 

parameter, a snow property that is easy to retrieve in-situ, appears to be the most relevant 42 

parameter for characterizing snow microstructure, despite the need for a scaling factor. 43 

 44 
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1. Introduction 49 

In snow remote sensing, a better parameterization of the radiative transfer models (RTM) for 50 

simulating snow microwave emission improves our ability to retrieve snowpack characteristics 51 

from space-borne observations. Snow microstructure metrics are the main input parameter of the 52 

microwave RTM (e.g. Rutter et al., 2009) and its characterization can strongly impact the 53 

retrievals from microwave emission measurements for snow monitoring (e.g. Mätzler, 1994; 54 

Armstrong and Brodzik, 2002; Kelly et al., 2003; Mätzler et al., 2006; Löwe and Picard, 2015). 55 

Thus, given that the available models that are well-defined in the literature and commonly used 56 

for snow remote sensing are defined by different snow microstructure parameterizations, a review 57 

appears essential. We consider here the following four models: the Dense Media Radiative 58 

Transfer– Multi layers (DMRT-ML) model (Picard et al., 2013), the Dense Radiative Transfer 59 

Model – Quasi-Crystalline Approximation (QCA) Mie scattering of Sticky spheres (DMRT-60 

QMS) model (Chang et al., 2014), the multi-layer Helsinki University of Technology model 61 

(HUT-nlayers) (Lemmetyinen et al., 2010a), and the Microwave Emission Model of Layered 62 

Snowpacks (MEMLS) (Proksch et al., 2016; Wiesmann and Mätzler, 1999; Mätzler and 63 

Wiesmann, 1999). Several aspects of these models are based on different electromagnetic 64 

theories or semi-empirical approaches (multiple scattering and absorption coefficient 65 

computations, for example), and they are often driven by sets of different measured inputs for 66 

snow grain metrics, such as snow specific surface area (SSA), correlation length or snow grain 67 

geometrical extent obtained from visual analysis. 68 

Tedesco and Kim (2006) compared earlier simplified single-layer versions of the DMRT, HUT 69 

and MEMLS models based on the snow grain metric given by visual inspection (average size 70 

over the snowpack depth of representative small, medium, and large grains in each layer 71 

measured using a microscope). MEMLS and HUT-nlayers were compared by Lemmetyinen et al. 72 

(2010b) and Pan et al. (2016). DMRT theory and IBA were also recently compared and analyzed 73 

(Löwe and Picard, 2015), while Roy et al. (2013) compared DMRT-ML and HUT-nlayers. 74 
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Sandells et al. (2016) compared DMRT-ML, HUT-nlayers and MEMLS models considering only 75 

the optical diameter generated by snow models. But the four multi-layer models considered were 76 

never compared together using coincident sets of measured snow properties. The main challenge 77 

in comparing these RTM models is that the input snow microstructure parameters differ in each 78 

model and are in some cases difficult or impossible to measure in the field. Three different snow 79 

microstructure representations are considered in these models: optical diameter (Do) and 80 

stickiness for DMRT-ML and -QMS, correlation length (pc) for MEMLS and maximum 81 

geometrical extent (Dmax) for HUT-nlayers. Consequently, some hypotheses are needed for their 82 

estimation allowing coherent intercomparison of models (Löwe and Picard, 2015). For example, 83 

it was previously shown that the optical diameter derived from the SSA needs to be scaled by a 84 

factor in order to be in agreement with measurements when considering DMRT-ML with non-85 

sticky medium (Brucker et al. 2011; Roy et al., 2013; Montpetit et al., 2013; Picard et al. 2014; 86 

Dupont et al., 2014). As the physical aspects of each model had already been extensively 87 

analyzed, we put the emphasis in this paper on comparing the models with surface-based 88 

measured brightness temperature (TB). The objective is to compare the simulations using the 89 

same in-situ measurements of improved snow parameterization, which had never been done. 90 

This paper briefly recalls the main basic fundamentals of these four models and more specifically 91 

the different grain size definitions involved (Section 2). After presenting datasets and snow 92 

microstructure measurement methods (Section 3), we first compare the four models using a 93 

synthetic snowpack to perform a sensitivity analysis (Section 4.1), and we then compare the 94 

simulated TB using sets of measured snow properties against measurements of surface-based 95 

radiometric TB at 11, 19 and 37 GHz (Section 4.3). 96 

 97 

2. Models and their respective snow microstructure metric 98 

A synthesis matrix of the four models considered in this study is presented in Table 1. These 99 

models are all publicly available (thus specific details of their implementations can be known) 100 
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and are extensively described in the references given in Table 1. Readers are invited to consult 101 

these references for detailed descriptions of the models, which are based on conceptually 102 

different approaches for computing snow electromagnetic properties and radiation transfer in the 103 

multi-layers of the snowpack. In this paper, all the simulations were performed using the 104 

recommended configuration for DMRT-ML and -QMS, the Improved Born Approximation 105 

(IBA) (option 12) for MEMLS and the original version of the extinction coefficient in HUT (see 106 

Table 1). 107 

One of the main difficulties in snow radiative transfer is the parameterization of snow 108 

microstructure consisting of a high density of scatterers per unit of volume. DMRT-ML and –109 

QMS consider the snow as a collection of sticky spherical ice particles defined by their radius 110 

and stickiness (Tsang and Kong, 2001; Tsang et al., 2007), while MEMLS parameterizes snow 111 

microstructural properties by a second order statistical function, the two-point correlation 112 

function, giving the mutual relationships between two scatterers within a given volume, such as 113 

the autocorrelation function (the exponential correlation length pex is generally used, see Section 114 

2.2 below). HUT is based on empirical scattering and extinction coefficients fitted with the 115 

observed maximum dimension of snow grains (Dmax), or more recently an effective grain size 116 

radius (Kontu and Pulliainen, 2010). When using in-situ ground-based measurements of snow 117 

microstructure parameterization, practical comparison of these models requires hypotheses to 118 

retrieve and link the different metrics. The metrics used in this study are briefly defined below. 119 

 120 

Table 1 Comparison between basics of DMRT-ML/-QMS, MEMLS and HUT-nlayers models.  121 

See the Table at the end of the paper. 122 

2.1 DMRT snow microstructure metric 123 

DMRT-ML considers snow grains as spherical particles of ice defined by their radius. Their 124 

position (clustering) is controlled by stickiness. For snow having a wide range of grain shape, the 125 

radius of equivalent spheres can be objectively defined by their optical radius (Ro), which can 126 
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always be derived from the SSA via the optical equivalent radius. The snow SSA is the surface of 127 

the air/snow interface (S) per unit of mass: M=ρsnow•Volume: SSA=S/M = S/(ρice•Volume) in m2 128 

kg-1, where ρice is the ice density (917 kg m-3). SSA measurements are described in Section 3. For 129 

spheres or snow assimilated as sphere equivalent (see the review paper by Domine et al., 2008), 130 

the optical radius (Ro) is expressed as (Ro in mm, ρice in kg m-3 and SSA in m2 kg-1):  131 

Ro = 3.103/(ρice•SSA)      (1). 132 

Since any measurements can be used to estimate stickiness, Brucker et al. (2011), Roy et al. 133 

(2013), Dupont et al. (2014) and Picard et al. (2014), considering a non-sticky medium, have 134 

shown that Ro should be multiplied by the scaling factor φDMRT when Ro is derived from SSA 135 

measurements (R'o in mm):  136 

    R'o = φDMRTRo = 3.103 φDMRT/(ρice•SSA)    (2). 137 

This scaling factor is discussed in Section 4.2. Roy et al. (2013) also showed that the following 138 

relationship (inspired by Kontu and Pulliainen, 2010) can be used for an effective optical radius 139 

of snow grains derived from SSA measurements: 140 

R''o [mm] = 1.1 [1 – exp(-24.6.103/(ρice•SSA)]    (3). 141 

The stickiness parameter (τ), used by DMRT theory (Tsang and Kong, 2001), is inversely 142 

proportional to the contact adhesion between spheres. It can be linked to the cohesion or to a 143 

degree of connectivity between grains. Thus, for non-sticky spheres: τ = ∞; for snow with 144 

clusters (aggregates) or grains with high strength of adhesion, τ decreases (for example τ = 1 to 145 

0.2 or less). DMRT-ML uses the “short range” approximation (Tsang and Kong, 2001) which 146 

implies that grains and aggregates should remain small compared to the wavelength. Roy et al., 147 

(2013) hypothesized that the needed scaling factor (φDMRT) is related to the assumption of non-148 

sticky spheres (τ = ∞) and to the assumption of monodisperse grain size distribution. This scaling 149 

factor is therefore a surrogate of the stickiness parameter which cannot practically be measured in 150 

the field (see Löwe and Picard, 2015). 151 
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 152 

2.2 MEMLS snow microstructure metric 153 

MEMLS uses the correlation length (pc) for describing snow microstructure, which is the slope of 154 

the spatial autocorrelation function at the origin (i.e. the derivative of this function). This 155 

parameter might be derived from micro-computed tomography measurements (micro-CT) (Löwe 156 

et al., 2013) or by high-quality stereological method (see Riche et al., 2012), but its rapid 157 

derivation from field measurements is still difficult. Recently, Proksch et al. (2015) proposed a 158 

relationship between Snow-Micropen measurements and correlation length that has not yet been 159 

validated for microwave emission applications.  160 

Here, we first estimate the correlation length from the equivalent sphere grain radius (Ro) as 161 

proposed by Mätzler (2002), following the Debye relationship:   162 

pc=4/3 Ro (1 – ν)       (4), 163 

where ν is the ice volume fraction:  ν = ρsnow/ρice. 164 

While there is no experimental relationship between simultaneous measurements of pc (from 165 

micro-CT measurements) and SSA measurements, Montpetit et al. (2013) showed that the 166 

following relationship gives optimized simulated TB using MEMLS driven with SSA 167 

measurements (p'c in mm and SSA in m2 kg-1):  168 

p'c [mm] =4.103 φMEMLS (1 – ν)/(ρice•SSA)    (5), 169 

where φMEMLS is a scaling factor and SSA is measured in-situ.  170 

If the autocorrelation function is approximated (fitted) by an exponential function of the form: 171 

exp(-x/pex), one can derive the exponential correlation length pex. According to the type of snow, 172 

pex is different from pc (Krol and Löwe, 2016; Matzler, 2002). For microwave measurements, pex 173 

is generally preferred to pc, and Mätzler (2002) found in general that pex ≈ 0.75pc, giving from (1) 174 

and (4): 175 

pex [mm] ≈ Ro (1 – ν) = 3.103 (1 – ν)/(ρice•SSA)  (6). 176 
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On the other hand, previous studies from Mätzler (1997) have shown that pc is closer to the 177 

minimum characteristic extent of the grain than related to the maximum geometrical particle 178 

extent. Mätzler (2002) gives a series of measurements of pc, pex and visually estimated grain size 179 

Dmax (defined below) for 20 samples of different snow types showing the correspondence 180 

between these parameters. Using these data, pex (or pc) can be expressed as a logarithmic function 181 

of Dmax: 182 

pex =  a + b ln(Dmax) for  ν> νth and Dmax > Dmax,th in mm 183 

    pex = Cst  otherwise                 (7), 184 

where νth and Dmax,th are thresholds delimitating the range of validity of the proposed model, and 185 

Cst is a constant for values below these thresholds. 186 

Using the Mätzler (2002) data, Durand et al. (2008) found that a = 0.18 and b = 0.09 for ν > 0.2 187 

and Dmax > 0.125 mm , and that pex = 0.05 ± 0.017  otherwise. 188 

 189 

2.3 HUT snow microstructure metric 190 

HUT input is based on individual grain size. There are many ways to describe the geometrical 191 

grain size of snow (Colbeck et al., 1990; Lesaffre et al., 1998; Fierz et al., 2009). Among them, 192 

one can cite the circle (or ellipsoid) that better encompasses the snow grain; the equivalent radius 193 

given by the ratio between projected grain area and its perimeter; the mean convex radius of 194 

curvature; or the greatest extent of the prevailing or characteristic grains:  Dmax. The latter 195 

corresponds to the maximum dimension of the "intermediate grain size" and has long been a 196 

classical parameter routinely used to visually characterize snow structure in the field (see 197 

Colbeck et al., 1990; Fierz et al., 2009). The HUT model can be driven either directly by Dmax, or 198 

by an effective grain diameter (Dmax,eff) derived from Dmax following the relationship that 199 

minimized the differences between measured and simulated TB, as proposed by Kontu and 200 

Pulliainen (2010) (see also Lemmetyinen et al., 2010a and 2015; Pan et al., 2016): 201 
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Dmax,eff = 1.5 (1 – exp(-1.5 Dmax))     (8),         202 

where Dmax,eff and Dmax are in mm.  203 

However, in this study, it appears that this relationship (Eq. 8) for estimating the Dmax,eff  does not 204 

give a good agreement, due to the lack of convergence in the optimization. This results from the 205 

large digitized Dmax measurement values obtained in this study (see Section 4.2), and Eq. 8 leads 206 

to a unique Dmax,eff. In the model comparison (Section 4.3), we thus consider Dmax,eff = 0.5 Dmax, 207 

derived from an optimization that reduces the difference between simulated and measured TB 208 

(method of Roy et al., 2013).  209 

 210 

When SSA is measured, Roy et al. (2013) use Equation (2), with a different scaling factor 211 

(φHUT) relative to the effective grain size in HUT simulations:  212 

Doeff  [mm] = 6.103 φHUT/(ρice•SSA)     (9). 213 

All the φ factors (φDMRT, φMEMLS and φHUT) are further discussed in the results section. Field 214 

measurement methods for SSA and Dmax estimates are presented in Section 3. 215 

 216 

2.4 Scaling factors for the models driven by SSA measurements 217 

The scaling factor φ depends upon the model considered and the type of snow. The change in this 218 

scaling factor is linked to other microstructure parameters such as stickiness and to the fact that 219 

we assume a monodisperse size distribution of snow grain (see the discussions in Brucker et al., 220 

2011; Roy et al., 2013 and Löwe and Picard, 2015). It cannot be explained by measurement 221 

uncertainties (Roy et al., 2016). Löwe and Picard (2015) theoretically demonstrate the need of 222 

grain size scaling between the optical diameter and the equivalent sticky hard sphere diameter. 223 

For DMRT-ML with the assumption of non-sticky spheres, the φ factor obtained varies from 2.3 224 

to 3.5 depending on the type of snow (Table 2). The amplitude of this factor may also partly be 225 

affected by errors in snow measurements and possibly in the soil parameters. Precise explanation 226 
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of these differences in the φ factor needs further study but is outside the scope of this paper. Here 227 

we used φ = 3.3, 1.3 and 3.7, respectively for DMRT-ML, MEMLS and HUT-nlayers (Table 2) 228 

in order to compare the known optimized models when driven by SSA measurements compared 229 

to simulations driven by Dmax measurements. 230 

 231 

Table 2. Scaling factor φ to be applied on the snow microstructure metric derived from in-situ 232 

SSA measurements, as a function of the RTM considered and the type of snow. All SSA 233 

measurements were derived from the DUFISSS's type approach (see Section 3.1), except *: the 234 

values depend upon the method used for retrieving SSA; and **: SSA retrieved from ASSAP 235 

device (see details in the given references, last column). 236 

Radiative 
Transfer 
Models 

Snow µstructure Metrics Sites φ References 

MEMLS p'c=4.103 φ (1 −ν)/(ρice
.SSA) 

Eq. 5 

Canada: 
Arctic, 

Subarctic, 
South Québec 

1.3 
Montpetit et al., 

2013 

DMRT-ML 
(no stickiness) 

R'o=3.103φ/(ρice
.SSA) 

Eq. 2 
 

Dome C 
Antarctica 

1.89, 
2.5, 

2.85* 

Brucker et al., 
2011 

Dome C 
Antarctica 

2.3** Picard et al., 2014 

Barnes Ice Cap 
Canada Arctic 

3.5 Dupont et al., 2014 

Canada: 
Arctic, 

Subarctic, 
South Québec 

3.3 Roy et al., 2013 

HUT-nlayers Roeff=3.103φ/(ρice
.SSA) 

Eq. 9 

Canada: 
Arctic, 

Subarctic, 
South Québec 

3.7 Roy et al., 2013 

 237 

2.5 Radiative Transfer Model inputs 238 
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Apart from the snow microstructure parameterization, all other input parameters required by the 239 

four models are the same for each layer defined by its thickness, snow temperature and density. 240 

Here, we only considered dry snow. An important contribution to snowpack emission can 241 

emanate from the soil under the snowpack, in particular at low frequencies. For the 242 

intercomparison in this study, we thus used the same rough soil reflectivity model proposed by 243 

Wegmüller and Mätzler (1999) (see the review of Montpetit et al., 2015a). At a given frequency, 244 

the soil parameterization is defined by the soil/snow interface reflectivity in horizontal 245 

polarization (ΓH) and vertical polarization (ΓV) with the following equations for an incidence 246 

angle (θ) lower than 60°: 247 

!! = !!!"#$%#&!"# − !" !!.!!"#$  248 

!! = !!!"#!!     249 

where k is the incident medium wave number (air or snow), !!!"#$%#& is the Fresnel reflectivity 250 

function which depends on the soil permittivity (εsoil), σ is the soil roughness parameter and β is a 251 

scaling factor for deriving the reflectivity at vertical polarization from the computed reflectivity 252 

at horizontal polarization. Following Montpetit et al. (2015b), we consider the optimized values 253 

of εsoil
eff , σeff and βeff parameters for each frequency given in Table 3. 254 

 255 

Table 3. Soil parameters considered for the three models (see Eq. 10). 256 

Frequency 
(GHz) εsoil

eff
' βeff σeff (cm) 

11 3.18-0.006134j 1.08 

0.19 19 3.42-0.00508j 0.72 

37 4.47-0.32643j 0.42 
 257 

For comparisons between simulated TB and measurements, the downwelling sky radiance 258 

reflected by the snowpack toward the radiometer has to be taken into account (Montpetit et al., 259 

(10), 
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2013; Courtemanche et al., 2015; Roy et al., 2016). In each surface-based radiometric 260 

measurement, the atmospheric contribution was calculated using the atmospheric Millimeter-261 

wave Propagation Model (MPM: Liebe, 1989) implemented in the HUT snow emission model 262 

(Pulliainen et al., 1999). The atmospheric model was driven with the air temperature and 263 

precipitable water of the atmospheric layers above the surface given by the 29 atmospheric layers 264 

of the North American Regional Reanalysis (NARR) (Mesinger et al., 2006) for the NARR pixel 265 

and time of measurements. Note that all the snowpits were located in open areas where no 266 

vegetation could contribute to the measured TB (see the discussion in Roy et al., 2016). We 267 

previously validated this procedure against sky microwave measurements (see Courtemanche et 268 

al., 2015). 269 

 270 

3. Ground-based measurement dataset 271 

 272 

3.1 Optical radius retrieved from SSA measurements using IRIS 273 

A light short-wave infrared laser-based system measuring snow albedo through an integrating 274 

sphere (InfraRed Integrating Sphere, IRIS), similar to the system previously proposed by Gallet 275 

et al. (2009), was used for SSA measurements (Montpetit et al., 2012). Relatively good accuracy 276 

(12-15%) and reproducibility in SSA measurements are obtained using the IRIS system on 277 

extracted samples. Gallet et al. (2009) and Montpetit et al. (2012) describe in detail these devices 278 

(Dual Frequency Integrating Sphere for Snow SSA: DUFISSS and IRIS, respectively). 279 

Lambertian targets with known reflectance values (Spectralon: 0.06, 0.25 0.60, 0.79, and 0.98 at 280 

1.33 µm) were used to calibrate the device before and after each series of measurements at each 281 

site. From the reflectance, the SSA was calculated as described by Montpetit et al. (2012).  SSA 282 

measurements allow us to estimate the mean optical radius of grain sizes of each layer (Eq.1), 283 

assuming that all grains have the same size (monodisperse size distribution).  284 

  285 
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3.2 Dmax measurements using multidirectional lighting macrophotos in the Shadow-box 286 

Macrophotos of snow grain samples have been widely used in numerous studies (e.g. Colbeck, 287 

1990; Fierz et al., 2009). In order to improve geometrical snow grain parameterization, we 288 

developed an optical system that uses, within an enclosed box (30x30x30 cm), five light-emitting 289 

diodes that provide five-direction (nadir, N, E, S and W) illumination of a gridded plate upon 290 

which snow grains are placed (Fig. 1). Five photographs are taken successively for each 291 

illuminated direction with a Nikon D40 fitted with a macro lens (Fig. 1). The projected area of 292 

the grain is extracted from a first photograph with the diode illuminating from nadir and the four 293 

other photographs allow the digitization of the projected shadows. Knowing the angles of 294 

illumination and the exact position of each grain on the gridded illuminated plate, it is possible to 295 

calculate the height of the grain envelope using the tangent illumination path corresponding to the 296 

projected shadow in each direction. We thus derived a numerical height model of each snow 297 

grain and reconstructed a 3D representation of the snow grain envelope (Fig. 1). From this 298 

elevation model, one can derive multiple size parameters: Dmax, minor and major axis of the 299 

envelope ellipsoid, projected area, mean height, maximum height and apparent volume and 300 

surface area. All of these parameters are then averaged for each sample. This device (called 301 

Shadow-box) is very easy to handle in the field, and improves the retrieval of a 3D representation 302 

of the snow grains. It is also useful to characterize snow grain shapes and types of extracted snow 303 

samples. Using calibrated spheres (steel balls from 0.8 to 4.8 mm), the retrieval error (bias) on 304 

Dmax was estimated of the order of 0.03 mm. The measurement protocol is as follows: we gently 305 

cover the plate with separated grains of a snow sample extracted from each snowpack layer 306 

(approximately every 3 cm over the snowpit), and take the five consecutive macrophotos, 307 

including identifications of the snowpit and layer. We then systematically manually digitize the 308 

contour of all the grains on the plate to estimate the mean Dmax (2D) values for each snowpack 309 

layer. The shadows help to discriminate individual grains in aggregates or when grains are stuck 310 

together. 311 
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 312 
 313 

Fig. 1 Shadow-box. Snow grains placed on the plate are successively illuminated from four 314 

directions by four LEDs and by one LED from the nadir, producing five macrophotos (right), 315 

from which a 3D envelope model of the grain can be retrieved after manual digitization of the 316 

shadows. The size of the grain shown is 7 mm. 317 

 318 

3.3 Correlation length 319 

Since no direct measurement of correlation length was carried out, the values of correlation 320 

length (pc or pex) used as inputs for MEMLS were estimated in three ways: (1) from the retrieved 321 

optical grain size radius (SSA measurements) and the fractional volume (Debye relationship, Eq. 322 

5) (hereafter labeled MEMLS_Do); (2) from the measured values of mean Dmax grain size (2D 323 

Shadow-box) and fractional volume based on the Mätzler relationship (Durand et al., 2008) 324 

(hereafter labeled MEMLS_Dmax_pex); and (3) from pex based on the observed linear relationship 325 

between pc and Dmax shown in the results section (see Fig. 5) (hereafter labeled  326 

MEMLS_Dmax_lin). 327 

 328 

3.4 TB measurements 329 

TB measurements were taken for every snowpit at 10.67 (hereafter noted 11), 19 and 37 GHz in 330 

vertical polarization (V-pol) and horizontal polarization (H-pol) at a height of approximately 2 m 331 
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above the surface using PR-series field radiometers (Radiometrics Corporation, Boulder, CO, 332 

USA) at an incidence angle of 54°-55°, which is close to the measurement incidence angle of the 333 

Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E) and Special 334 

Sensor Microwave Imager (SSM/I) space-based sensors. The ellipsoidal footprint of 335 

measurements at the snow surface was approximately 0.5 m × 0.65 m. The radiometer calibration 336 

was based on two measurements taken with the absorbing foam Eccosorb© (Cuming Microwave 337 

Corporation, MA, USA) at the ambient temperature (i.e. warm reference) and another taken over 338 

a surface of liquid nitrogen (i.e. cold reference) (Asmus and Grant, 1999; Langlois, 2015). In the 339 

worst case, measurement error for the calibration target was estimated at ±2 K. Ambient and cold 340 

point measurements from before and after the field campaign periods (typically separated by five 341 

to ten days) were used to produce a final calibrated TB data set.  342 

 343 

3.5 In-situ snow data 344 

The snow data needed by the models were derived from in-situ measurements in three northern 345 

Canadian regions. Table 4 provides the data from the Arctic: Churchill (MB), the Subarctic 346 

region: James Bay (QC), and southern regions of Québec: Sherbrooke (QC) and St-Romain 347 

(QC). All sites were already well-described in the references given in the Table 4. This database 348 

of 32 snowpits encompasses a wide range of snow types (i.e. metamorphic processes and 349 

stratigraphy), typical of North American environments. For each site, profiles of snow 350 

temperature, snow density, and snow microstructure were taken at a vertical resolution of 3 or 5 351 

cm in the footprint of the microwave radiometers. The density was measured with a 185 cm3 352 

density cutter, and the samples were weighed with a 100 g Pesola light series scale with an 353 

accuracy value of 1 g. The temperature was measured with a Traceable 2000 digital temperature 354 

probe (±0.1°C). The microstructure of each layer was defined with both SSA (optical radius) and 355 

Dmax measurements, the latter using macrophotos (Shadow-box). In Table 4, we give the 356 

vertically averaged values of density, optical radius and Dmax, weighted by the snow layer 357 
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thicknesses and the derived bulk p'c (from Eq. 5) were also estimated (9th column). The 358 

stratigraphy was examined at each site, and all ice lenses (or crusts), when present, were 359 

identified and measured. Their density was not measured as this is very difficult to properly 360 

sample. All the microwave and snow measurements were always synchronised in time. All these 361 

32 sites (Table 4) were used for model comparison. 362 

 363 

Table 4. Summary of the snow parameters of all sites analyzed in this study. Site name: CHxx 364 

corresponds to Churchill, MB sites (Roy et al., 2013; Montpetit et al., 2013); SIRSP4 and RoSP1 365 

correspond to the southern Québec sites, respectively to the SIRENE site at Sherbrooke, QC and 366 

to the St-Romain, QC site (Roy et al., 2013); BJxx sites corresponds to the James Bay, Nunavik, 367 

QC sites (Subarctic sites) (Roy et al., 2016). The snowpits where an ice lens was observed are 368 

identified (last column). 369 

 
Site 

Name 
Snow depth 

(m) 
Tsnow 

(K) 
Density 
(kg/m3) 

Tsoil 
(K) 

Optical radius 
(mm) 

Dmax 
(mm) 

Bulk p'c 
(Eq. 5) 

Ice 
lens 

1 CH42 0.37 259.4 289.4 267.9 0.22 4.43 0.267  
2 CH43 0.70 257.3 311.4 270.3 0.20 2.68 0.231  
3 CH83 1.18 269.4 372.6 272.7 0.19 2.83 0.199  
4 CH90 0.82 265.3 284.0 271.8 0.18 3.43 0.213  
5 CH91 0.91 267.1 324.7 272.5 0.19 4.16 0.210  
6 CH92 0.83 268.3 292.8 272.9 0.22 3.10 0.262  
7 CH95 1.74 266.0 380.3 272.8 0.15 1.89 0.150  
8 CH96 1.80 266.8 367.8 272.9 0.17 2.20 0.172  
9 CH97 1.50 266.4 380.9 272.7 0.18 2.07 0.178  

10 CH98 1.19 265.8 351.4 272.5 0.16 2.04 0.166  
11 CH104 0.48 255.2 261.4 269.6 0.32 4.90 0.393  
12 CH105 0.45 258.7 229.7 270.3 0.32 6.11 0.419  
13 CH111 0.44 252.5 284.6 269.8 0.25 4.54 0.303  
14 CH55 0.51 258.5 308.4 269.7 0.19 3.54 0.214  
15 CH56 0.35 254.9 314.6 267.2 0.20 3.15 0.231  
16 CH99 0.57 259.3 328.0 270.1 0.23 4.02 0.255  
17 CH101 0.19 259.1 263.2 264.6 0.33 4.88 0.403  
18 CH54 0.48 257.1 345.0 269.5 0.20 4.51 0.215 x 
19 CH57 0.25 260.2 321.9 266.1 0.20 3.50 0.224  
20 CH58 0.35 256.5 304.6 267.9 0.16 4.84 0.189 x 
21 CH59 0.65 260.2 276.6 271.7 0.23 3.71 0.274 x 
22 CH60 0.14 270.4 288.3 262.2 0.27 3.83 0.325 x 
23 CH61 1.03 260.5 400.8 272.5 0.19 2.68 0.187  
24 CH82 0.35 266.5 285.4 270.8 0.37 4.08 0.446  
25 CH93 0.82 279.6 311.9 271.9 0.28 4.43 0.325 x 
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26 CH100 0.43 259.8 295.8 269.2 0.28 4.78 0.328 x 
27 CH114 0.72 283.2 323.0 272.8 0.33 3.19 0.373 x 
28 CH115 0.31 271.4 313.6 272.2 0.33 5.11 0.382  
29 SIRSP4 0.33 271.5 245.9 273.0 0.14 3.07 0.173  
30 RoSP1 0.47 269.4 179.2 273.5 0.08 1.05 0.107 x 
31 BJjan1 0.51 266.8 284.9 271.5 0.16 3.07 0.191 x 
32 BJfev2 0.66 265.8 245.1 273.1 0.18 2.01 0.229 x 

 370 

 371 

4. Results 372 

 373 

A sensitivity analysis is first performed to compare the four models considered with the same 374 

inputs considering a synthetic snowpack (Section 4.1). We then discuss the consistency between 375 

the grain size measurements (Section 4.2), and we compare the simulations with ground-based 376 

measurements (Section 4.3). 377 

 378 

4.1 Sensitivity analysis of the three models 379 

Based on an identical synthetic snowpack, we seek to illustrate model sensitivity to three 380 

parameters: - grain size (Fig. 2); - density (Fig. 3); - and ice lens in the snowpack (Fig. 4). 381 

Fig. 2 shows the comparison between the 37 GHz brightness temperature variations as a function 382 

of Do, using the four models in a very simple synthetic case defined by one layer of 1 m 383 

thickness with a mean uniform density of 250 kg m-3. The incidence angle of TB simulations is 384 

55°. All input parameters were the same for the four models and the different microstructure 385 

metrics were derived from the same initial grain parameter (Do) using equations (2), (5) and (9). 386 

To define the optical diameter of each model, we used the scaled factors defined in previous 387 

analysis (see discussion in Section 4.2). These factors optimize the simulations compared to in-388 

situ radiometric measurements for real snowpacks. The relationships defining the microstructure 389 

metrics were derived from Equations (2), (5) and (9), respectively for DMRT-ML (assuming 390 

non-sticky spheres) (Roy at al., 2013), MEMLS-IBA (Montpetit et al., 2013) and HUT (Roy et 391 
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al., 2013). For DMRT-QMS, we used the same relationship as for DMRT-ML, and also assuming 392 

non-sticky spheres. The comparison in Fig. 2 is thus performed using the following equations: 393 

DMRT-ML/-QMS: D'o = 3.3 Do 394 

MEMLS: p'c = 1.3  (2/3) Do (1-ν)      (11) 395 

HUT: Doeff = 3.7 Do 396 

The results show that the TB simulated by the four models similarly decrease with the grain size, 397 

as expected due to the high sensitivity of microwave attenuation to grain size at 37 GHz. Using 398 

the scaling factors for the input grain size metrics given in Eq. 11, the simulated TB V-pol are 399 

close for Do around 0.5 mm and for Do<0.2 (Fig. 2, top). However, MEMLS TB values appear 400 

underestimated by 18 K compared to DMRT-ML/-QMS around Do = 0.3 mm. Note that DMRT-401 

ML is identical to DMRT-QMS over the whole analyzed range of Do, as we stay in the Rayleigh 402 

range (see Picard et al., 2013), and despite the different formulation of the scattering coefficient. 403 

When the grain size becomes larger (Do > 0.6 mm, SSA < 11 m2 kg-1), the HUT-nlayers TB 404 

significantly decreases, because this model empirically considers multiple scattering and is based 405 

on the 1-flux RT simplification, leading to underestimate downward-propagated TB and then 406 

upward reflected and backscattered signal. Multiple scattering increasing with grain size tends to 407 

increase the upward radiation, compensating for the TB attenuation. 408 

 409 
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 410 
Fig. 2 TB variation at 37 GHz as a function of the optical diameter (Do) of grain size for the four 411 

models. Top: TB at the Vertical polarization; Bottom: Polarization ratio (H-pol/V-pol). 412 

Simulations performed using Eq. 11 for the snow grain size definitions and the Wegmüller and 413 

Mätzler (1999) soil model (Table 1); Soil temperature = 273 K; soil roughness = 0.19 cm, 414 

dielectric permittivity = 4.53 and the polarization reflectivity factor beta = 1.1 (Montpetit et al., 415 

2015a); snow density = 250 kg.m-3; snow depth = 1 m; Snow temperature = 263 K; no stickiness 416 

and no ice lens. The incidence angle of TB simulations is 55°. 417 

 418 

The main polarization effects arise from reflections at layer interfaces, and are at their maximum 419 

near the Brewster angle (around 55° at 37 GHz), leading to a significant decrease of the TB (H-420 

pol) with incidence angle, while TB V-pol is weakly independent of the incidence angle. Fig. 2 421 

(bottom) shows the Polarization Ratio (PR = TB H-pol/TB V-pol) variations for the four models as 422 

a function of the optical grain size simulated for a fixed incidence angle of 55°. DMRT-ML and 423 

DMRT-QMS are also identical in this case. The HUT model practically neglects the scattering 424 

polarization variations with growing grain size, while DMRT-ML/-QMS and MEMLS models 425 

show different trends in PR variations with grain size. The MEMLS volume scattering in snow is 426 

slightly sensitive to polarization (Wiesmann et al., 1998) with a weak PR increase of 2% when 427 
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the grain size increases between Do = 0.1 to 0.6 mm, while DMRT-ML/-QMS decreases by 4%, 428 

leading to a difference of about 7% compared to MEMLS for grain sizes above 0.6 mm (Fig. 2, 429 

bottom).  430 

For a given fixed density, the polarization is modulated by 2 mechanisms:  snow scattering and 431 

interface reflection. As snow-air interface reflections are similarly treated in each model 432 

(assuming Fresnel's reflection) and because the density remains constant in these simulations, the 433 

differences between the three types of models (DMRT-ML/-QMS; HUT-nlayers and MEMLS) 434 

result from the differences in the radiative transfer solution. As a matter of fact, polarization 435 

effects are generated by volume scattering driven by the granular structure of the medium, i.e. by 436 

a combined effect of snow grain size and density (see Mätzler, 1997) and also of stickiness for 437 

DMRT-ML/-QMS (see Picard et al., 2013). The observed differences in PR variations in Fig. 2 438 

(bottom) could thus likely governed by differences between the radiative transfer processing of 439 

the diffuse scattering component of the signal. The results for lower incidence angles (i.e. not 440 

Brewster) are similar. 441 

We performed simulations (not shown) using a new model (in progress, unpublished) using the 442 

same N-flux solver used in DMRT-ML but which can compute scattering coefficients with either 443 

the DMRT theory (as in DMRT-ML and DMRT-QMS) or IBA (as in MEMLS). In both cases, 444 

assuming the same scattering theory, the results show a decrease of the PR with increasing Do, 445 

while the MEMLS-IBA (6-flux) shows an increase of the PR. This suggests that the radiative 446 

transfer processing, specifically 6-flux versus N-flux, could be the cause of the different 447 

behaviors observed in Figure 2 (bottom), but further exploration of the role of the solver is 448 

needed, 449 

 450 

The patterns of TB variation with snow density show similar behaviors between models but at 451 

different amplitudes (Fig. 3). Here, Do is considered constant and equal to 0.25 mm. Over the 452 

range of density variation shown, below 400 kg m-3 (i.e. below 44% fractional volume), at 453 
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vertical polarization, DMRT-ML/-QMS shows a greater sensitivity, ΔTB V-pol of 40 K for 454 

density from 150 to 300 kg.m-3, than MEMLS and HUT which vary slightly. For low snow 455 

density between 150 and 200 kg m-3 the four models are similar, but at a high snow density of 456 

400 kg m-3, the TB(V-pol) difference between DMRT-ML/-QMS and MEMLS is 28.5 K. (and 457 

21.3 K at H polarization) (Fig. 3, top). For coarser grain size (not shown), the differences in TB 458 

V-pol versus density variations between models are amplified, due to the difference in scattering 459 

processing in each model.  460 

PR variations in relation to density show parallel trends (Fig. 3, bottom), but the decrease in PR 461 

when density increases shows significant differences in slope values for each model (more than 462 

2% difference at low density for MEMLS and HUT compared to both DMRT models). For high 463 

densities (near 400 kg/m3), this decrease is greater with DMRT-ML than DMRT-QMS. 464 

 465 
Fig. 3 Same as Fig. 2, but for density (Do = 0.25 mm). 466 
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 467 

TB H-pol varies as a function of density change between interface layers, mainly from reflection 468 

at the snow-air interface, and of snow scattering (grain size). Since Fresnel reflection is 469 

considered here, surface reflection depends on the snow dielectric constant and thus the density. 470 

Assuming a constant grain size (as in Fig. 3), as density increases, the reflection coefficient 471 

increases and TB H-pol decreases, leading to the decrease in PR (as TB V-pol is relatively 472 

constant at the Brewster angle). In other words, where snowpack evolution features slow 473 

metamorphism as is observed in Antarctica, PR clearly decreases with density.  This was shown 474 

by Picard et al. (2014) from surface-based measurements at Dome Concordia (East Antarctica). 475 

Champollion et al. (2013) also showed that the observed 2000-2010 AMSR-E PR increase was in 476 

agreement with the observed decreasing surface snow density, also at Dome Concordia. 477 

However, when the snowpack evolves during the winter through various metamorphic processes 478 

(increasing grain size), increasing layering (alternation of high- and low-density layers) and 479 

increasing density processes, PR direction changes over time appear less clear. Moreover, the 480 

surface roughness would produce a more diffuse scattering distribution, leading to weaker 481 

polarization, while ice layers or wind-slab snow crusts lead to a significant degree of polarization 482 

(e.g. Mätzler, 1982, 1994; Grenfell and Putkonen, 2008; Dolant et al., 2016). In general, since 483 

surface density and state are the most important characteristics influencing polarization, one 484 

expects a decrease in PR with time from snowfall. The DMRT simulations showed a PR decrease 485 

for both increasing grain size and density processes in the synthetic cases considered here (Fig. 2 486 

and 3), while MEMLS and HUT show a PR decrease only as a function of increasing density. 487 

 488 

The third sensitivity analysis (Fig. 4) shows the effect of a thin ice layer put at the top of the 489 

snowpack for the four models. At V-pol, there are almost no TB variations due to ice lens while 490 

TB H-pol is reduced by up to 65 K when an ice lens is introduced. The stronger decrease in H-pol 491 

(ice lens vs. no ice) compared to the one at V-pol comes from the higher sensitivity to layer 492 
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interface reflectivity at H-pol. Note that, in Fig. 4, the differences in TB V-pol amplitudes 493 

between models result from the configuration (Do and density) used for the simulations (see Fig. 494 

2 and 3). Moreover, ice layer thickness variations have no impact on TB variation, except when 495 

using the MEMLS model for thin ice layers. Around Dice = 0.125 mm, MEMLS is as much as 43 496 

K lower at H-pol than the DMRT and HUT models. This significant TB decrease simulated by 497 

MEMLS for H polarization that appears for ice thickness under λ/2 is due to the coherent 498 

reflection that dominates the microwave behavior for layers of the size λ/4 (Weismann and 499 

Mätzler, 1999). The DMRT-ML and HUT-nlayers models do not take into account this 500 

attenuation effect of the quarter-wavelength resonance. In practice, as the ice layer thickness 501 

spatially varies in the footprint of the sensor (Rutter et al., 2014), such effects are generally less 502 

pronounced than in simulations, but can be clearly observed for thin ice lenses on or in the 503 

snowpack (see Montpetit et al., 2013; Roy et al., 2016).  504 

 505 
Fig. 4 TB variation at 37 GHz as a function of an ice layer thickness (Dice) put on the top of the 506 

snowpack for the four models (full lines: V-pol; dotted lines: H-pol). Snowpack and soil 507 

properties are the same as in Fig. 2 and 3 (Do  = 0.25 mm and density = 250 kg.m-3). Ice lens 508 
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density = 917 kg m-3 and ice lens temperature is the same as snow temperature. 509 

 510 

4.2  Snow grain database comparison analysis 511 

We analyzed 159 photographed plates from the 32 studied snowpits, corresponding to a total of 512 

36,384 digitized grains with an average of 229 grains per plate. For each plate, we considered the 513 

mean maximum dimension of all the grains on the plate (Dmax). For each corresponding layer, we 514 

also measured the snow SSA and density. It is well known that the relationship between Do and 515 

Dmax is not one-to-one (see Langlois et al., 2010; Leppänen et al., 2015). However, in order to 516 

evaluate the consistency of the datasets, Fig. 5 shows the relationship between the calculated 517 

correlation length derived from SSA and density measurements (Eq. 5, φ = 1) and the 518 

corresponding mean Dmax for all the samples. The results show that this relationship appears 519 

somewhat scattered as expected, and more linear rather than the logarithmic relationship 520 

suggested by Mätzler (2002). But note that, for the latter case (for 20 samples), Dmax values were 521 

visually determined, whereas, in our case, Dmax were derived from digitized contours. The 522 

digitization, the very large number of data and also the computation of the mean values (over 523 

hundreds of grains) could explain that our Dmax values are different than those visually 524 

determined. The digitization of grain size is considered as a more reproducible and more precise 525 

approach. We also considered (not shown) median values instead of arithmetic means that did not 526 

give significant differences. On the other hand, the correlation lengths in the Mätzler (2002) 527 

database were measured (micro-CT) whereas we derived this parameter from SSA and density 528 

measurements. The reason for the differences between these micro-structure metrics (Dmax, SSA, 529 

correlation length), discussed for example by Löwe and Picard (2015), and which may also result 530 

from differences in snow types (alpine, boreal, arctic), is beyond the scope of this paper. This 531 

unique database (coincident values of Do, pc and Dmax) was used to provide specific inputs to 532 

drive each model considered in order to simulate the brightness temperatures. 533 
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 534 

Fig. 5 Relationship between the correlation length derived from SSA and density measurements 535 

(pc, calculated with Eq. 5, φ = 1) and the mean maximum geometrical extent of the grains (Dmax) 536 

measured by digitized photographs of snow grains (each point of this graph corresponds in 537 

average to 229 digitized grains per sample). The dotted curve corresponds to the logarithmic 538 

relationship observed by Mätzler (2002). 539 

 540 

4.3 Model comparison using measured inputs 541 

As DMRT-QMS is very similar to DMRT-ML, only three models are considered in the 542 

following: DMRT-ML, HUT-nlayers and MEMLS. For all the sites described in the Table 4, Fig. 543 

6 compares the 3 model simulations against surface-based measured brightness temperatures with 544 

exactly the same soil parameters (Table 3), and for the snow microstructure metrics derived either 545 

from SSA or Dmax measurements. DMRT-ML (Fig. 6a), HUT_Do (Fig. 6b) and MEMLS_Do 546 

(Fig. 6c) were driven by the scaled optical diameter of snow grain derived from SSA 547 

measurements. The HUT_Dmax simulations (Fig. 6d) were driven by Dmax measurements using an 548 

optimized scaling factor (see Section 2). Using Dmax measurements, two inputs were also 549 

considered for MEMLS simulations: 1) MEMLS_Dmax_pex (Fig. 6e) based on the Mätzler 550 

relationship (Durand et al., 2008, Eq. 7, see Fig. 5); and 2) MEMLS_Dmax_lin (Fig. 6f) based on 551 
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the correlation length estimated by the observed linear relationship shown in Fig. 5. These model 552 

inputs are summarized in Table 5.  553 

 554 

The root mean square errors (RMSE) and the biases are compared in Table 6 and shown in Fig. 7 555 

for the three frequencies (11, 19 and 37 GHz) and each polarization. Note that the full set of input 556 

snow properties and 11 GHz radiometer measurements are only available for two sites, hence, the 557 

analysis focuses on 19 and 37 GHz. 558 

 559 

 560 

Table 5 Summary of the inputs used for the model simulations. The corresponding equations 561 

(Eq.) are explained in Section 2. 562 

Model 
configuration 

Grain size 
measurements Input parameters Eq. Fig. 

     
DMRT-ML SSA D'o =  6.103 3.3/(ρice

.SSA) 2 6a 
     
     

MEMLS_Do SSA p'c=4.103 1.3(1 − ν)/(ρice
.SSA) 6 6c 

     

MEMLS_Dmax_pex Dmax 
- pex =  0.18 + 0.09 ln(Dmax) for  
ν > 0.2 and Dmax > 0.125 mm 

- pex = 0.05 ± 0.017   otherwise 
7 6e 

     
MEMLS_Dmax_lin Dmax pc = 0.1069 Dmax Fig. 5 6f 

     
     

HUT_Do SSA Doeff = 6.103 3.7/(ρice•SSA) 9 6b 
     

HUT_Dmax Dmax Dmax,eff  = 0.5 Dmax - 6d 
     

 563 

 564 

 565 

 566 

 567 
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Table 6 Bias (B) and RMSE (R) (K) between simulated and measured TBs for each frequency 568 

and polarization and for each model driven by specific inputs (described in Table 5). Bold: 569 

minimum bias and RMSE values of each line respectively (but not necessarily statistically 570 

significant). 571 

Model 
DMRT-

ML 
MEMLS HUT 

Inputs 
Do 
φ=3.3 

Do 
φ=1.3 

Dmax_lin 
(Fig. 5) 

Dmax_pex 
Eq.7 

Do 
φ=3.7 

Dmax 
φ=0.5 

 B R B R B R B R B R B R 
11V 2.1 2.5 5.5 5.8 5.5 5.5 7.8 7.8 -2.1 2.4 -1.1 1.7 
11H -7.3 7.5 -4.1 4.5 -3.9 4.9 -2.6 4.1 -10.0 10.3 -9.1 9.4 
19V 16.0 19.4 0.1 11.4 6.2 14.5 15.0 18.2 13.8 18.7 13.6 17.8 
19H 14.7 23.0 2.9 17.0 7.8 18.8 15.0 23.7 8.5 27.5 13.4 22.4 
37V 11.0 25.3 -10.8 21.6 -10.8 26.7 -10.8 24.4 11.3 32.4 9.6 30.8 
37H 7.5 20.1 -4.9 16.4 -3.3 19.9 9.0 21.4 8.5 27.5 6.7 23.4 
All 7.3 16.3 -3.1 12.8 0.3  15.0 5.6 16.6 5.9 19.1 5.5 17.6 

 572 

 573 

For the 32 analyzed snowpits, the overall results at 19 and 37 GHz for the 6 model configurations 574 

show mean bias values of the order of 6 K, ranging from -10.8 to 16 K depending on the model, 575 

configuration and frequency considered. The mean RMSE value is of the order of 20 K (19 GHz) 576 

and 24 K (37 GHz), ranging from 11.4 to 32.4 K. Large differences in bias appear between 577 

models (MEMLS with negative biases), and no significant differences in bias or RMSE can be 578 

seen between polarizations. Note that except for HUT_Dmax (0.5 • Dmax), the models were not 579 

specifically optimized for the new cases considered in this study, since the used scaling factors 580 

were derived from previous publications over different sites.  581 

 582 

 583 
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 584 

585 

 586 
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Fig. 6 Scatterplot comparing simulated brightness temperatures against measurements for each 587 

frequency and polarization for all the sites (described in Table 4). Circled symbols represent sites 588 

that included ice lenses. a: DMRT, b: HUT_Do (right); c: MEMLS_Do; d: HUT_Dmax; e: 589 

MEMLS_Dmax_pex; f: MEMLS_Dmax_lin. Input parameters are listed in Table 5. Values given 590 

in the figures correspond to the RMSE in Kelvin (reported in Table 6). 591 

 592 

 593 

 594 
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Fig. 7 Comparison between the RMSE and biases for the 6 model configurations. The 595 

corresponding values are given in Table 6. 596 

 597 

MEMLS_Do seems to give slightly better results (mean RMSE of 14 K and 19 K, respectively at 598 

19 and 37 GHz, for both polarizations) relative to other configurations and models (Fig. 6, 7 and 599 

Table 6). DMRT-ML results show a mean RMSE of 21 K (19 GHz) and 23 K (37 GHz) in this 600 

study, although we obtained better results for 45 other Arctic and Subarctic snowpits with the 601 

same parameterization (mean RMSE of 10 K (19 GHz) and 12 K (at 37 GHz), see Roy et al., 602 

2016). The HUT model shows a lesser agreement at 37 GHz (mean RMSE of 30 K and 27 K 603 

respectively for the Do and Dmax configuration). 604 

 605 

MEMLS tends to underestimate the TB at 37 GHz V-pol (negative bias), while the other models 606 

tend to overestimate the simulated TB (positive bias). This is in accordance with the comparison 607 

using synthetic snowpacks (see Fig. 2, top), showing lower MEMLS TB compared to DMRT and 608 

HUT for a large range of grain sizes.  609 

 610 

Among the three analyzed MEMLS versions, it appears that MEMLS_Do performs best, 611 

compared to the Dmax-based simulations (an average RMSE at 19 and 37 GHz of 16.6 K, 20 K 612 

and 22 K for respectively the MEMLS_Do, _Dmax_lin and _Dmax_pex configurations). As 613 

expected, the HUT model provides a slightly lower RMSE when using Dmax (23.6 K) compared 614 

to HUT_Do (26.5 K). Moreover, at 37 GHz, DMRT using SSA appears better than the HUT 615 

model based on Dmax. This confirms that the scaled SSA parameter is, in general, clearly better 616 

than the Dmax parameter for describing snow grain size for microwave radiometry no matter the 617 

MEMLS or DMRT-ML model. 618 

 619 

 620 
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We showed (Fig. 4) that, for the synthetic snowpack, ice lens thickness within the snowpack 621 

could lead to significant differences in TB among the models. Here, we accounted for the ice layer 622 

effects when they were observed in the snowpack, and the comparison shown in Fig. 6 does not 623 

exhibit systematic differences between snowpits with ice layers (10 sites/32, see Table 4) and 624 

those without ice layers. This first shows that ice layers can be adequately corrected for when 625 

their presence and particularly their position within the snowpit is known (see Montpetit et al., 626 

2013; Roy et al, 2016), and secondly that ice layers cannot explain the differences in RMSE 627 

between models. 628 

 629 

In terms of linear regression between simulated and measured TB (coefficient of determination R2 630 

and slope of the regression), the model comparison (Table 7) also highlights the differences 631 

between models and configurations. Best results are obtained with DMRT-ML and MEMLS_Do, 632 

with a mean R2 of the order of 0.75 – 0.79 for the 4 channels (TB at 19 and 37 GHz and both 633 

polarizations). Results for these models are better at 37 GHz and with a slope slightly greater 634 

than 1, meaning that the models underestimate low TB values at this frequency (TB < ~170 K). 635 

Even if MEMLS_Dmax_lin is really better than MEMLS_Dmax_pex for both R2 and slope 636 

parameters, MEMLS_Dmax_lin performs less well than MEMLS based on Do. The HUT model 637 

gives here the worst agreement against measurements. Note that, in all cases (Table 7), the TB H-638 

pol values at 19 GHz show the lowest correlations, likely due to non-optimized processing of 639 

stratification between the snow layer interfaces, assumed specular, and for the soil-snow interface 640 

(roughness, for example). The statistics at 11 GHz are not included because there are only 2 641 

measurements, but are included in the overall linear regression.  642 

 643 

 644 

 645 

 646 
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Table 7 Comparison of linear regression parameters (coefficient of determination R2 and slope of 647 

the regression) for simulated and measured TB for the models shown in Fig. 6. All*: including 11 648 

GHz at H-pol and V- pol. 649 

Model 
DMRT-

ML 
MEMLS HUT 

Inputs 
Do 
φ=3.3 

Do 
φ=1.3 

Dmax_lin 
(Fig. 5) 

Dmax 
pex Eq.7 

Do 
φ=3.7 

Dmax 
φ=0.5 

 R2 Slope R2 Slope R2 Slope R2 Slope R2 Slope R2 Slope 
19V 0.30 0.53 0.52 0.95 0.29 0.64 0.46 0.20 0.14 0.24 0.11 0.19 
19H 0.13 0.33 0.23 0.47 0.17 0.39 0.03 0.12 0.05 0.18 0.05 0.17 
37V 0.63 1.07 0.72 1.04 0.45 0.78 0.31 0.29 0.13 0.34 0.19 0.43 
37H 0.73 1.19 0.78 1.10 0.58 0.88 0.48 0.36 0.22 0.45 0.34 0.58 
All* 0.75 1.10 0.79 1.06 0.69 0.98 0.63 0.70 0.51 0.73 0.55 0.76 

 650 

At least, we compared the simulated Polar Ratio (PR H/V) at 37 GHz to the measured PR. The 651 

results show similar performance between the models (mean RMSE of 0.055). Also, we cannot 652 

conclude about the effect of the grain size on the PR trend (as simulated in Fig. 2). This relates to 653 

the fact that the sites integrate a large range of density and Do values, while Fig. 2 assumes a 654 

constant density when Do varies. 655 

 656 

5. Discussion and conclusion 657 

Over a large set of Arctic, Subarctic and boreal snow datasets, we derived a unique 658 

comprehensive snow grain size metrics database. These metrics were defined, on the one hand, 659 

by their specific surface area (SSA, from IR reflectometry measurements), and, on the other 660 

hand, for the same snow samples, by their mean maximum geometrical extent, called Dmax, 661 

obtained from digitized macrophotos of snow samples at each layer. Here, we did not estimate 662 

Dmax size by visual inspection as is generally done, because of the subjectivity of that approach. 663 

The digitization of each snow grain distributed on a photographed plate is thought to be a more 664 

robust and objective approach. This dataset allowed us to compare ground-based measurements 665 

of brightness temperatures (TB) to the simulated TB using four models driven by their specific 666 
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metrics: DMRT-ML and -QMS with the optical diameter (Do) derived from SSA measurements; 667 

the HUT model with Dmax; and the MEMLS model driven by the correlation length which can be 668 

estimated using both parameters (Do and Dmax). We also tested the HUT model with Do, and we 669 

compared MEMLS simulations based on 2 different relationships for correlation length 670 

estimation.  A total of six model configurations (Table 5) were thus analyzed (Fig. 6, 7 and Table 671 

6).  672 

 673 

Whatever the model considered, the scatterplots between simulated and measured TB show 674 

somewhat large scatters (Fig. 6) due to the inherent uncertainties on all the parameters that affect 675 

the emitted signal, i.e. soil (temperature, dielectric permittivity and roughness), snow density 676 

stratification, snow temperature profile and snow grain size stratification (Roy et al., 2016; 677 

Durand et al., 2008). The obtained root mean square error between simulated and measured TB 678 

are in the same range of values shown in previous studies that considered the same models (Roy 679 

et al., 2016; Pan et al., 2016; Löwe and Picard, 2015; Roy et al. 2013; Lemmetyinen et al., 680 

2010b). The results analyzed here are thus representative of errors commonly obtained for Arctic 681 

and Subarctic snows with these models. But this is the first time that these models were 682 

compared with their specific snow microstructure input data for which they were defined. These 683 

results confirm first that each metric, Do as well as pc and Dmax, must be scaled in order to 684 

minimize the RMSE between simulated and measured TB. This aspect was discussed and partly 685 

explained in previous papers (Löwe and Picard, 2015; Roy et al. 2013; Kontu and Pulliainen, 686 

2010). Secondly, the results show that the snow microstructure metric based on Do appears to 687 

give better results than the metric defined by Dmax (Table 6). This may be due to the fact that 688 

microwave scattering is more directly related to Do than to Dmax. Also, even if the shadow box 689 

used to measure Dmax, is more accurate than visual estimates, the Do value, derived from snow 690 

SSA measurements, could give a better estimate of the effective mean size over the grain size 691 

distribution per layer than the mean value of Dmax measurements. 692 
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 693 

It is difficult to conclude on the performance of DMRT-ML, HUT and MEMLS due to the large 694 

observed scatter on simulations, although the MEMLS model appears here slightly better for the 695 

snowpits analyzed in this study. We found a mean RMSE at high frequencies (19 and 37 GHz) of 696 

16.6 K, 22.0 K and 23 K respectively for MEMLS_Do, DMRT-ML and HUT_Dmax. However, as 697 

mentioned above, a specific optimization could have been made on the input parameters for each 698 

model (on the φ scaling factors) that would have a different effect on the models and change the 699 

results comparison. This scaling factor may also depend on the types of snow, i.e. on 700 

metamorphism processes and shape (see Löwe and Picard, 2015; Krol and Löwe, 2016). 701 

However, the comparison shown here between the four models using a synthetic snowpack (Fig. 702 

2, 3 and 4) clearly shows the intrinsic difference in radiative transfer behavior as a function of 703 

grain size, density and ice lens variations within the snowpack, in particular for the polarization 704 

ratio (TB H-pol / TB V-pol). 705 

 706 

In conclusion, to date, from a practical point of view using in-situ measurements of snow 707 

properties, this paper shows that the SSA parameter appears to be the most relevant parameter for 708 

characterizing snow microstructure, even if it must be scaled to be used for microwave 709 

simulations. Snow tomography could give more precise microstructure characterization but 710 

requires significant processing time. When suitably scaled for each model (MEMLS and DMRT-711 

ML), the SSA parameter produces the same order of error magnitude in simulated brightness 712 

temperature. From a physical perspective, Löwe and Picard (2015) showed that MEMLS and 713 

DMRT-ML are in fact very similar. 714 
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Table 1 Comparison between basics of DMRT-ML/-QMS, MEMLS and HUT-nlayers models. See below for the definitions of terms 927 
 928 
 929 
Model DMRT-ML DMRT-QMS MEMLS (V3)[1] HUT-nlayers 

Version V1.6 (with several options) V 0.1 IBA version Empirical 
version 2015 

Physical 
principle 

Maxwell equations + several approximations 
considering a collection of densely packed sticky 

spheres 

Empirical relationships between micro-structure and scatt/abso/ext 
coefficients and empirical relation for the dependence of the polarization 

factors on volume fraction 

Theory 
Dense Media Radiative Transfer Model 

(Shih et al. 1997) 
(Tsang et al., 2013) 

Improved Born Approxi-
mation (IBA) [2] 
(Mätzler,1998) 

Empirical 
scattering coef. 

(Weismann et 
al., 1998) 

Semi-empirical relation 

Typical 
range of 

frequency 
1 - 100 GHz 

Approxi-
mations 

 
Options 

Recommended 
option 

Research 
option 

Quasi-Crystalline 
Approximation 
(QCA) of Mie 

scattering 

• Combination of coherent and incoherent 
(scattering) reflection between interface layers 
• Coherence effect for thin ice layer  

• Empirical scat. coef. 
• Semi-empirical absorption 
coef. • QCA-CP[3]  

• Rayleigh 
assumption 
• Optional 
correction for 
large particles 
(Grody, 2008) 
• Mono-
disperse sphere 
radius 
• No stickiness 

• QCA-CP  
• Rayleigh 
assumption 
• No large 
particles 
• Poly- 
disperse (i.e. 
Rayleigh 
distribution) 
• No 
stickiness 

• IBA: option 12 

• Different 
scattering 

coef.: options 
8,10,11 

κe(1/m) 
= 

!!!!!""!.!  
 

[6] 
 

κe(1/m) 
= 

! !!!!""! !.!
 

 
[7] 

• Optional stickiness 
• Optional bubbly ice 

• Optional stickiness 
 • Ice without air bubble (pex=0) • Ice as high density snow 

with Reff=0 
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Model DMRT-ML DMRT-QMS MEMLS (V3)[1] HUT-nlayers 
Snow 
micro-

structure 
parametri-
zation[4] 

Spheres defined by their radius (Ro) and their 
stickiness (τ) 

Correlation length 
(pc or pex) 

For 5 to 100 GHz, the model is defined by the 
correlation length range from 0.05 up to 0.6 

mm (Mätzler and Wiesmann, 1999) 

Grain geometrical extent 
(Dmax) 

Grain effective diameter 
(Dmax,eff) 

Liquid 
Water 

content 

Wetness fractional volume of 
water with respect to ice vol. No Volumetric liquid water content W: 0 to about 

0.15 
Snow moisture (up to 

several %) 

Radiative 
transfer 
between 
layers 

DISORT[5] 
(recommended 64 streams or 

more) 

DISORT[5] 
by eigenvalue-

quadrature analysis 
2 or 6 streams 1 streams (Empirical coef. 

for forward scatt q=0.96) 

 
Fresnel reflection coef. for snow/snow and snow/atmosphere interfaces 

 

Main Ref. 

Picard et al., 2013 
Brucker et al., 2011 

Roy et al., 2013 
Dupont et al., 2014 

Chang et al., 2014 
Huang et al., 2012 
Liang et al., 2008 
Tsang et al., 2007 

Proksch et al., 2016 
Mätzler  and Wiesmann (2014) 
Wiesmann and Mätzler, 1999 
Mätzler and Wiesmann, 1999 

Wiesmann et al., 1998 
Mätzler 1996, 97, 98, 2004 

Schwank et al., 2015 

Lemmetyinen et al., 2010a 
Pulliainen et al., 1999 

Kontu and Pulliainen, 2010 

Web Site 
Open source GPL license 

http://lgge.osug.fr/~picard/dmrt
ml/ 

http://web.eecs.umic
h.edu/~leutsang/Avai
lable%20Resources.h

tml 

http://www.iapmw.unibe.ch/research/projects/
snowtools/memls.html Upon request 

 930 
[1] MEMLS Version 3 (2014) uses updated formulas for the dielectric constants of ice and water. An L-band version of MEMLS was used by 931 

Schwank et al. (2015), assuming a simplified one-layer snowpack. 932 

[2] IBA: the Improved Born Approximation (IBA) (Mätzler, 1998) expresses the scattering coefficient in terms of the Fourier transform of the 933 

two-point correlation function. 934 
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[3] QCA: The quasi-crystalline approximation (QCA) consists of approximating the resolution of the multiple scattering calculation in a dense 935 

porous environment by regarding this medium as a roughly crystalline structure, implying assumptions on the position of two particles 936 

between them considered fixed. 937 

QCA-CP: QCA can be optionally improved by the so-called Coherent Potential (QCA-CP) (Tsang and Kong, 2001). The basic concept of the 938 

CP is to regard the medium near each scatterer as an effective medium with a uniform effective scattering function of aggregates, which 939 

implies that the function remains constant in space. The CP approximation thus makes it possible to solve the calculation of the coherent 940 

potential Green's operator for multiple scattering (and in the QCA context in our case) assumed as constant in space. 941 

[4] See text for the snow microstructure parameterization of each model.  942 

[5] The Discrete Ordinate Method (DISORT) is used to numerically solve the radiative transfer equation (Jin, 1994) 943 

[6] Extinction coefficient κe: α = 0.000415, relationship for 18-60 GHz, Hallikainen et al. (1987) 944 

[7] Extinction coefficient κe : β = 0.461 Roy et al. (2004) 945 
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